
The 5G Key-Establishment Stack:
In-Depth Formal Verification and Experimentation

Rhys Miller
rhys.miller@surrey.ac.uk

Surrey Centre for Cyber Security
University of Surrey

Guildford, UK

Ioana Boureanu
i.boureanu@surrey.ac.uk

Surrey Centre for Cyber Security
University of Surrey

Guildford, UK

Stephan Wesemeyer
s.wesemeyer@surrey.ac.uk

Surrey Centre for Cyber Security
University of Surrey

Guildford, UK

Christopher J P Newton
c.newton@surrey.ac.uk

Surrey Centre for Cyber Security
University of Surrey

Guildford, UK

ABSTRACT
We formally analyse the security of each 5G authenticated key-
establisment (AKE) procedures: the 5G registration, the 5G authen-
tication and key agreement (AKA) and 5G handovers. We also study
the security of their composition, which we call the 5GAKE_stack.
Our security analysis focuses on aspects of multi-party AKEs that
occur in the 5GAKE_stack. We also look at the consequences this
AKE (in)security has over critical mobile-networks’ objects such as
the Protocol Data Unit (PDU) sessions, which are used to bill sub-
scribers and ensure quality of service as per their contracts/plans.

In our assessments, we augment the standard Dolev-Yao model
with different levels of trust and threat by considering honest,
honest-but-curious, as well as completely rogue radio nodes. We
formally prove security in the first case, and insecurity in the latter
two as well as making formal recommendations on this. We carry
out our formal analysis using the Tamarin-Prover.

Lastly, we also present an emulator of the 5GAKE_stack. This
can be a useful “5G API”-like tool for the community to experiment
with the 5GAKE_stack, since the 5G networks are not yet fully
deployed and mobile networks are proprietary and closed “loops”.

CCS CONCEPTS
• Security and privacy→ Formal security models.

KEYWORDS
Formal Verification, Security, Mobile Communications
ACM Reference Format:
Rhys Miller, Ioana Boureanu, Stephan Wesemeyer, and Christopher J P
Newton. 2022. The 5G Key-Establishment Stack: In-Depth Formal Veri-
fication and Experimentation. In Proceedings of the 2022 ACM Asia Con-
ference on Computer and Communications Security (ASIA CCS ’22), May

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517421

30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3488932.3517421

1 INTRODUCTION
In 2021, 5th Generation Mobile Networks (5G) technologies are
at a vital point in their development. In the UK for instance, in
2018, a government-focused consultation [27] forecast full-country
5G-coverage by 2027; also, they estimated that the UK would invest
around £6.85 billion in the role-out of digital infrastructure, includ-
ing 5G-deployment, between 2018 and 2021. Also, 5G – as opposed
to 4th Generation Mobile Networks (4G) – is able to offer many
more and much refined services, as well as subscribers’ plans of
numerous sorts (e.g., Netflix bandwidth included, content-delivery
acceleration for video streaming, etc.). With this comes an increased
interest in illicit gains: e.g., to maliciously obtain a better Quality of
Service (QoS) without paying for it. Moreover, the radio nodes in 5G
are usually accessed and manipulated via software remotely [26],
much more so than in 4G where this was already shown to be a
risk [29], thus increasing the attack surface of the mobile network
considerably.

Given these added threat vectors, it is of paramount importance
to offer new as well as varied security analyses for the different
cryptographic protocols1 used in the 5G network. In this work, we
do this by focussing on the 5G security procedures that re-establish
the authentication and channel-securing keys for the mobile device
thus ensuring it can be cryptographically identified to the different
parts of the network and communicate securely with them.

Our Work on 5G AKEs
The Stack of Inter-dependent AKE Protocols in 5G. The AKE pro-

tocols in 5G are: the Registration procedure (REG) and AKA, the XN
handover procedure (XN), and the N2 handover procedure (N2) [11].
REG (incl. AKA) and handovers (XN, N2) operate over the same
user-identifiers and largely the same cryptographic material. Yet,
these procedures are executed by different entities in the 5G net-
work, with some more trustworthy/secure than others. Moreover,
the key-updates carried out by each of these procedures affect dif-
ferent levels of the same 5G key-hierarchy, which is shared by all
1The 3rd Generation Partnership Project (3GPP) specifications [1–5, 7–9, 11] refer to
protocols as “procedures”.

https://doi.org/10.1145/3488932.3517421
https://doi.org/10.1145/3488932.3517421

these procedures and which is the basis for the user’s authentica-
tion and secure communication. Finally, the REG, AKA, XN and
N2, all carry back and forth long-term data linked to the user’s
voice/data connections and billing information. So, it is important
that these procedures be as secure as they can be, be considered
in silo, but also as a composed AKE primitive, and under varying
trust and threat models.

When we consider these 5G AKE procedures (i.e., REG, AKA,
XN and N2) all together, we refer to the composed procedures as
the 5GAKE_stack.

In-depth Security Analysis of the 5G AKE Protocols, in Varying
Threat Models. In this paper, we formally analyse the procedures in
the 5GAKE_stack, in a stand-alone manner and as a composed AKE
protocol, applying various threat models. We find several security
issues in the case where the radio-part of the network (a.k.a. the
Radio Access Network (RAN)) contains rogue nodes; in some cases,
these nodes need not even be fully malicious; “honest-but-curious”
is enough to lower the security of these procedures.

Towards an API for the 5GAKE_stack. On a different note, the
arguably numerous and non-trivial 5G specifications have evolved
significantly since 2016 when their 3GPP standardisation process
began. In these specifications, the fully-capable 5G mode is called
“stand-alone”, but this is not yet widely deployed. There are not
many devices on the market that are activated in stand-alone mode.
At the moment, it is therefore hard to see the full 5G security
procedures “at work”. To this end, another contribution in this
paper is an emulator (and its source code) of these 5G security
procedures (e.g., REG, AKA, handovers) such that other researchers
can use this as they would an Application Programming Interface
(API) for 5G experimentation.

Organisation of the paper. Section 2 presents a background on
the 5G Registration, and the 5G handover procedures. Section 3
shows our envisaged threat models. In Section 4, our formal security
verification of the full 5GAKE_stack and of the sub-procedures of the
5GAKE_stack is discussed. Our 5GAKE_stack emulator is discussed
within Section 5. Lastly, in Section 6, we discuss related work and
in Section 7, we conclude.

2 BACKGROUND
In Section 2.1, we present an overview of the 5G network2. In
Section 2.2, we give an outline of the 5GAKE_stack, focusing on the
aspects needed for our analyses and implementation.

5G Specifications. The 3GPP specifications used to create our
formal models follow Release 16 [6], and are: TS 23.316 [9], TS
23.501 [7], TS 23.502 [11], TS 24.501 [4], TS 29.244 [3], TS 33.501
[8], TS 33.512 [1], TS 33.515 [2], TS 38.415 [5], and TS 38.423 [10].

2.1 An Overview of the 5G Network
In Figure 1, we give a simplified representation of the 5G network
architecture.

Users. In 5G networks, a User Equipment (UE) is subscribed to
and receives service from an operator, whose main backend infras-
tructure is called the core network. The subscribers and the core will
2We assume no roaming, i.e., the subscriber is served only by the network managed
by their operator.

Figure 1: Main 5G Entities & Interfaces: An Overview

share several long-term cryptographic secrets, which we denote
succinctly as K.

Radio Access Nodes. At any point, a user is provided mobile
service through a radio “base-station” denoted Next Generation
NodeB (gNB), which in turn can communicate with the UE’s core
network and other gNBs. The combination of these nodes forms
the RAN.

The Operator & Its Core.We only mention briefly some sub-parts
of the core. The Access and Mobility Management Function (AMF)
receives all connection and session related information from the
UE but is only responsible for handling connection and mobility
management tasks while the Session Management Function (SMF)
deals with session management.

On the side of the operator, there is also the implementation of
the User Plane Function (UPF). A UPF is a packet gateway which
connects the operator’s internal network to an external network,
e.g. the internet. So when a UE makes a HTTP request, its serving
gNB forwards the request to the UE’s UPF. The UPF then routes the
UE-issued HTTP traffic in and out of the edge of the network. It
also supports/implements different UE-related functions including
rate-limiting based on QoS agreements and billing.

Communication Interfaces. Interfaces are tagged alphanumeri-
cally in Figure 1 (e.g., N1, N4, etc). At any point, a given UE is served
by a single gNB. They can communicate over an un-encrypted chan-
nel, at the so-called Non Access Stratum (NAS) level: for instance,
when the gNB proxies procedures between the UE and the core,
e.g., to re-establish new cryptographic keys used to (re-)secure the
channel between the gNB and the UE. Alternatively, the two can
communicate securely at the Access Stratum (AS) level over which
the actual mobile messages are sent/received. Analysing the secu-
rity of re-establishing the keys to secure the AS level is one aspect
of this work.

All interfaces between the gNBs themselves, between the gNBs
and the core and between the different parts of the core (including
UPFs) are secure, i.e., they are assumed to provide confidentiality,
integrity and authentication. The security of these interfaces does
not form part of this work. We are only concerned with the security
of UE-to-gNB and UE-to-Core.

2.2 An Overview of the 5GAKE_stack
2.2.1 Securing UE-to-gNB Interfaces via the 5GAKE_stack. Actual
mobile/application messages, called access-stratum messages, are
messages between any one UE and a gNB. The two entities (using
the core) first establish a secure channel by using the well-known
AKA as part of a procedure called Registration (REG). Messages over
this channel are secured with what is called access-stratum (AS)
keys (K

𝐴𝑆
). These K

𝐴𝑆
are derived from a key called 𝐾𝑔𝑁𝐵 , which

is (re-)established during AKA, but also during handovers, as we
explain next.

Occasionally, a gNB that has so far provided a user with mobile
signal changes (for instance because the user has moved physically
out of its reach). At this point, a handover is initiated which requires
the refreshing of the key 𝐾𝑔𝑁𝐵 . This key has been shared by the
UE and one gNB, referred to as source node (s-gNB), and the new
𝐾𝑔𝑁𝐵 key will now be shared by the UE and a new serving node,
called target node (t-gNB). There are two handover procedures: XN,
and N2. There are several flavours of N2.

As Figure 1 shows, not all gNBs are connected amongst them-
selves via an XN interface (XN), but all are connected via a N2
interface (N2) to the core. This implies that all gNBs can execute
N2 for a handover, but not all can use XN.

With the refreshing of 𝐾𝑔𝑁𝐵 , the different procedures in the
5GAKE_stack, in fact, refresh different series of keys respectively.
This key hierarchy is summarised in Figure 2, where different boxes
show the procedures controlling their respective parts of the hi-
erarchy. On the edges of Figure 2, one can see that these keys are
shared by different entities (e.g., 𝐾𝑔𝑁𝐵 and the AS Keys – UE and
gNBs; the rest – UE and core). Indeed, these keys serve different
purposes and are either used: a) as “seed” keys for other keys (e.g.,
𝑁𝐻); b) for authentication (e.g., 𝐾𝑆𝐸𝐴𝐹); or c) for securing actual
interfaces (e.g., 𝐾𝐴𝑀𝐹 to secure 𝑁 1).

Figure 2: 5G Key Hierarchy [7, 11]: Refreshment by Proce-
dure & Sharing across Parties

2.2.2 The Registration & AKA Procedures. The Registration proce-
dure (REG), which contains AKA as a sub-procedure, is executed

when a UE joins the network or (re)gains signal. The Registration
procedure is described mainly in [7, 11].

The REG procedure is run between a UE and the core, and it is
passively proxied by a node 𝑔𝑁𝐵0. During REG , the core authen-
ticates the UE, and –with the aim to secure the channel between
said UE and 𝑔𝑁𝐵0– the procedure refreshes a list of keys as shown
in Figure 2. The lowest-level key regenerated by the UE and the
core at the end of AKA is 𝐾𝐴𝑀𝐹 . This 𝐾𝐴𝑀𝐹 is used by the core and
the UE to generate a new “security key” denoted 𝐾𝑔𝑁𝐵 . The core
sends 𝐾𝑔𝑁𝐵 to 𝑔𝑁𝐵0, and this radio-node uses 𝐾𝑔𝑁𝐵 to derive the
access-stratum keys K

𝐴𝑆
to communicate securely with the UE.

In Table 1, we show the short-term keys re-established at the
end of each REG execution, and their distribution across parties.

UE 𝑔𝑁𝐵0 Core
𝐾𝐴𝑀𝐹 ✓ ✓
𝐾𝑔𝑁𝐵 ✓ ✓ ✓

Table 1: Keys Refreshed/Shared at the End of Registration

2.2.3 The Handover Procedures: XN and N2. The handover pro-
cedures are described mainly in [7, 11]. A handover procedure is
executed every time the UE swaps from being served by one gNB,
called source node s-gNB to being served by another gNB, called
target node t-gNB. This generally happens to enable the UE to main-
tain a good signal/connection, as it physically moves away from
one radio node and closer to another.

Another aim of a handover is to facilitate secure communication
between the UE and the new gNB, i.e., the t-gNB. In line with the
REG procedure, a fresh “security key” 𝐾∗

𝑔𝑁𝐵
needs to be sent to the

target node t-gNB as part of the handover which is then used to
establish the AS keys. There are two different handover procedures
supporting this:

(1) The N2 procedure. In this case, the core generates and sends
a new security key 𝐾∗

𝑔𝑁𝐵
to the t-gNB. This is similar to the

Registration procedure. The serving s-gNB asks the core to
start the process, but the s-gNB is passive with respect to
𝐾𝑔𝑁𝐵 ’s regeneration.

(2) The XN procedure [8, 10]. In this case, the serving s-gNB,
which already has a current security-key 𝐾𝑔𝑁𝐵 shared with
the UE, is an active proxy in the key-exchange procedure: it
generates and sends to the t-gNB a new security key 𝐾∗

𝑔𝑁𝐵
.

XN Key-Derivations & Backwards Security. In XN, the source
node s-gNB has a current security key 𝐾𝑔𝑁𝐵 and computes a new
security key 𝐾∗

𝑔𝑁𝐵
for the target node t-gNB. Since the AS keys are

computed out of the 𝐾𝑔𝑁𝐵 keys and (retrievable/known data), it
means that the source node s-gNB can compute the AS keys that
will decrypt the channel between the UE and the t-gNB. This is
a well-known fact [8]: i.e., XN does not have backward security
[19]. XN’s lack of backward security can or cannot be “healed” [19]
depending on how 𝐾∗

𝑔𝑁𝐵
is derived. To this end, we now describe

XN’s computation of 𝐾∗
𝑔𝑁𝐵

which can be done either by horizontal
key derivation (HKD) or vertical key derivation (VKD).

• XN’s Horizontal Key Derivation. In this case, the source node
derives the new 𝐾1

𝑔𝑁𝐵
from the previous 𝐾0

𝑔𝑁𝐵
. We use XNhkd to

refer to XN executed with such an establishment of 𝐾1
𝑔𝑁𝐵

.

UE s-gNB t-gNB Core
𝐾𝑔𝑁𝐵 ✓ ✓ ?
𝐾∗
𝑔𝑁𝐵

✓ ✓ ✓

current NH ✓ ✓
next NH ✓ ✓

Table 2: Keys Refreshed/Shared at the End of XN with HKD
UE s-gNB t-gNB Core

𝐾𝑔𝑁𝐵 ✓ ✓ ?
𝐾∗
𝑔𝑁𝐵

✓ ✓ ✓

current NH ✓ ✓ ✓
next NH ✓ ✓

Table 3: Keys Refreshed/Shared at the End of XN with VKD

Clearly, XN’s lack of backward security can be prolonged via a
series of XNhkd executions. Consider that XNhkd was executed in 𝑛
times in a row. So, the security key𝐾𝑛

𝑔𝑁𝐵
for the𝑛-th t-gNB depends

on the 𝐾𝑛−1
𝑔𝑁𝐵

of the 𝑛 − 1-th s-gNB and other recoverable/public
data. So, a rogue 𝑔𝑁𝐵 which was source node 𝑛 handovers ago
can retrieve iteratively all the security keys 𝐾1

𝑔𝑁𝐵
, . . . , 𝐾𝑛

𝑔𝑁𝐵
and

therefore decrypt the UE-AS traffic with all the nodes that were
t-gNB in these 𝑛 handovers.

• XN’s Vertical Key Derivation. In this case, the source node de-
rives the new 𝐾1

𝑔𝑁𝐵
using a unique key called Next-Hop Key (NH)

which it received from the core at the end of the handover in which
it acted as the t-gNB for the current, to-be-handed-over UE. This
NH is derived by the core from 𝐾𝐴𝑀𝐹 , which –as we explained–
is refreshed (at least) at the end of each Registration procedure
execution. We use XNvkd to refer to XN executed with such an
establishment of 𝐾1

𝑔𝑁𝐵
.

Clearly, in a sequence of XN executions, as soon as a vertical key
derivation takes place, the chain of serial loss of backward security is
broken. Note that, provided we trust the gNBs to follow the protocol
and not be malicious, vertical derivation should (always) take place
when the s-gNB holds an unused NH3 for the UE currently being
handed over.

To summarise, the main keys which are re-established and/or
shared across parties at the end of a XN handover procedure execu-
tion are given in Tables 2 and 3. In Tables 2 and 3, we have a placed
a question mark in the 𝐾𝑔𝑁𝐵 column for the core, as it is possible
for the core to have this key in the case where the XN was preceded
by a Registration procedure.

N2 Key-Derivations: Trust & Backwards Security. The N2 protocol
requires less trust in the gNBs, since the s-gNB is not actively calcu-
lating the security key 𝐾∗

𝑔𝑁𝐵
for the t-gNB. In N2, the derivation of

𝐾∗
𝑔𝑁𝐵

is in fact a vertical key derivation based on a new NH locally
computed by the core and sent to the t-gNB.

The core can be configured to re-fresh the keys further up the key
hierarchy than NH: e.g., by recomputing𝐾𝐴𝑀𝐹 ; this is referred to as
“N2 with 𝐾𝐴𝑀𝐹 rekeying”. When we write simply N2, we generally
assume implicitly it is without 𝐾𝐴𝑀𝐹 rekeying.

The choice between one type of handover or another is down
to the interfaces between the s-gNB and the t-gNB: if there is an

3The NH could have been used by the current s-gNB, if this gNB received it at the
end of N2, or if the served UE had temporarily been in idle state and then the gNB
refreshed its own 𝐾𝑔𝑁𝐵 using that NH.

XN between them, then the XN handover procedure is executed;
otherwise, N2 will be executed, intermediated by the core.

5GAKE_stack: Summary on Key Derivations & Backwards Secu-
rity. Tables 1 to 3 show the end-state of executing the 5GAKE_stack
procedure with respect to key refreshment and redistribution. We
provide further details in our appendices: e.g., see Figure 6 for REG
and Figure 7 for XN.

Finally, Figure 3 gives a summative representation of the back-
ward security and “post-compromise healing” [19] in REG, XN,
and/or N2.

Figure 3: Overview of Backward Security with respect to
𝑲∗
𝒈𝑵𝑩 : Loss and Healing via 5G Handovers

2.2.4 Protocol Data Units Sessions. A Protocol Data Units (PDU)
is a networking and billing-related data-structure used by the 5G
network to book-keep the data connections and the associate usage
that the UEs have. A PDU session will contain several long-term
details, such as what a given user is entitled to by its contract (e.g.,
Quality of Service parameters), as well as real-life details such as
consumption data, speed of connection and network information
(e.g., the UPF used to route the connection out to the internet), all
in relation to the current connection. In this work, we refer to the
long-term details of a PDU session as the “PDU session type”. An
active UE has what is called a PDU session-list (PDUSL) and several
PDU sessions can be open at once, each with its own type.

In any procedure of the 5GAKE_stack, the latest PDU session list
of the UE is updated by the core e.g., the core might assign new
UPFs4 for the different PDU sessions, and will provide the user’s
plan details such as QoS descriptions as part of an updated PDU
session list, PDUSL’ .

The core sends the updated PDU session list PDUSL’ to the 𝑔𝑁𝐵
that will serve the UE as well the relevant UPFs. This PDUSL update
and its distribution by the end of any 5GAKE_stack procedure is
also shown in Table 4.

4A 5G UE could have different PDU sessions served by different UPFs: e.g., the Netflix
traffic goes via one UPF and other traffic via another.

UE the (new) serving gNB Core (SMF) UPF
PDU-SL’ ✓ ✓ ✓ ✓

Table 4: Updated PDU Session List Across Entities at the End
of 5GAKE_stack Procedures

UPFs’ Smart Filtering on PDUs. Depending on the type of a UE’s
access-stratum data connection, the serving gNB will send the
UE’s data traffic to the corresponding UPF for routing out to the
internet. The serving gNB should do this forwarding according
to what is recorded in the current PDU session list PDUSL’, i.e.,
send it to the associated UPF using the QoS and other service
parameters as stated in the UE’s current PDU session list. A UPF can
be configured to check that any received request is in agreement
with its PDUSL’ sent by the core for the UE in question; see [3,
§§5.7,5.8]. We call this smart filtering but also note that this is not a
mandatory configuration in 5G. As such, the request may be served
by the UPF without any checks and thus not match the UE’s service
parameters.

3 OUR TRUST & THREAT MODELS
We will now consider the different trust and threat models applied
to the 5GAKE_stack:

The Honest 5GAKE_stack. As shown in Figure 2, the Registration
procedure (incl. AKA), the XN handover procedure, and the N2
handover procedure all refresh the same subset of 5G keys used
directly to secure the channel between the UE and the gNBs (i.e.,
𝐾∗
𝑔𝑁𝐵

, 𝑁𝐻), as well as those keys (i.e., 𝐾𝐴𝑀𝐹) for securing the 𝑁1
interface between the UE and the AMF. In fact, these procedures
are usually run sequentially, e.g., REG, XN, XN, XN, N2, XN, REG,
and the lack of security in one can propagate and affect the security
of the execution of another. This suggests that registration and
handovers need to be analysed individually (especially those that
have not been, e.g., the Registration procedure), as well as part of
the full 5GAKE_stack.

Honest-but-Curious gNBs. In the XN handover procedure, we
need to trust that the s-gNB will improve the lack of “one-step”
backwards security by choosing a Vertical Key Derivation (VKD)
whenever it has an available NH for the UE to be handed over. If
the s-gNB was set not to do so, this would not require any real
software modification on the radio, i.e., the gNB could be forced
to do Horizontal Key Derivation (HKD) only via a configuration
option. This rogue gNB would be “honest-but-curious”, in that it
would run the correct XN handover procedure but in a way that
facilitates knowledge of its generated 𝐾∗

𝑔𝑁𝐵
for previous gNBs.

Corrupt/Rogue gNBs. Given a PDU session update, which hap-
pens during the Registration procedure, XN handover procedure
and N2 handover procedure, we trust the serving gNBs to use the
correct PDU session list for a given UE and route its data traffic
accordingly. Contrary to this, a rogue gNB may choose the PDU
session types itself, differently to what the core prescribed thus
controlling a UE’s level of service (irrespective of the core-updated
PDU session list and the UE’s contract).

In this paper, we formally check the 5GAKE_stack procedures,
separately and/or composed, given the honest, “honest-but-curious”,
and corrupt threat models for gNB.

CONTRIBUTIONS
The contributions of this paper are as follows: In our first contri-
bution, detailed in Section 4, using the Tamarin-prover [30], we
model and formally verify the following aspects:

(1) W.r.t Honest Registration procedure.We model the Reg-
istration procedure and formally prove its security in the
case of honest participants.

(2) W.r.t. Honest 5GAKE_stack. In a single model, we for-
malise the Registration procedure (incl. AKA) and XN han-
dover procedure and formally prove the security of this ver-
sion of the 5GAKE_stack, if no party is dishonest. This for-
mally shows that even if the two procedures have different
and varying parties involved, from an AKE perspective, their
composition runs correctly/securely from beginning to end,
i.e., at the end of the Registration procedure, the parties fin-
ish in agreement over keys as per Table 1, and at the end of
the XN handover procedure, the parties finish in agreement
over keys as per Tables 2 and 3.

(3) W.r.t. Corrupt gNBs. We formalise the Registration proce-
dure, adding several relevant sub-parts of the network such
as the UPFs, as well as an AS message for the UE to make
data requests. In this augmented REG model, we include
malicious gNBs and formally show that:
– parties in the Registration procedure end up in agreement
over the UE’s updated PDU session list PDUSL’, as expected
and stated in Table 4.
– after this PDU agreement, a corrupt gNB can fraudulently
manipulate the PDU sessions of any UE it serves, thus im-
pacting their quality of service in any manner they wish. In
practice, this means that the radio nodes can choose sub-
scribers’ QoS irrespective of what their contracts states.
– this malicious behaviour can be stopped if the UPF does
“smart filtering” and thus checks the correctness of the PDU
sessions it is routing onto for a given UE. We therefore rec-
ommend that smart filtering be mandatory for UPFs.
To our knowledge, this is the first time the 5G Registration
procedure has been modelled formally; this is true for both
a) considering it in the normal Dolev-Yao model, and b) in
the case of corrupt gNBs.

(4) W.r.t. Honest-but-Curious gNBs.We model the XN han-
dovers including honest-but-curious gNBs which can force
horizontal key-derivations. We formally show that one such
honest-but-curious gNB can always hand over to another
honest-but-curious node, thus making the lack of backwards
security last longer while honest gNBs present in the model
jsut follow the procedure correctly. Together, this shows that
such honest-but-curious gNBs can exist in the network and
operate in the 5GAKE_stack, unhindered.

(5) Creating, Augmenting, Integrating & Proving. We cre-
ated a new and arguably highly non-trivial Tamarin model
for REG. We used Tamarin existing models for AKA [12] and
for XNhandovers [31].We aligned thesemodels and combine
then with our REG model. We augmented all models with
new parties (e.g., UPF), PDU session handling, threat models
(e.g., corrupt and honest-but-curious gNBs). In various com-
binations of these models, we prove that all properties that

were inherited still hold, as well as proving the new results
above.

Our second contribution, detailed in Section 5, is an open-source
emulator for XN and N2 handovers. Note that is also supports
REG/AKA, but this is not its main focus. This emulator can be used
by researchers as an API or building block for 5G experimentation.

Note: All our code and our most up-to-date Tamarin models can
be found at [17].

4 FORMAL SECURITY VERIFICATION OF
THE 5GAKE_STACK

In this section, we show the first formal verification of the full
5GAKE_stack, the formal verification of the Registration procedure,
as well as the first formal analyses of the sub-procedures of the
5GAKE_stack when varying the levels of security and trust in the
5G network. For this, we use the Tamarin-prover(Tamarin) [30],
a well-know security protocol analysis tool.

Note: Our most up-to-date Tamarin models can be found at [17].
All our Tamarin models follow the relevant 3GPP specifica-

tions [1–5, 7–11] closely, whichmakes them faithful representations
of these 3GPP specifications. This is desirable, but also renders some
of the verifications labourious, in need of longmanual proofs and/or
automation by bespoke oracles. Even with these optimised oracles,
the complexity of the models meant that our verification (and even
just the loading of some models) is not possible without a very pow-
erful machine to support it. Indeed, our verification experiments
were run using Tamarin v1.6.1, on a server with two Intel™ Xeon™
E5-2667 V3 at 3.20GHz CPUs (8 cores, 16 threads each) and 378GB
of RAM.

4.1 Tamarin Overview
Tamarin is a popular verification tool for symbolic analysis [15] of
protocols; it supports an unbounded number of concurrent protocol
sessions/executions in the full Dolev-Yao model [23].

Tamarin models are transition systems over a multi-sorted term
algebra, operating on the semantics of multiset rewriting logic [24].
Security properties to be analysed are expressed in a guarded first-
order logic quantifying over variable inside facts declared in the
model. In most cases, for non-trivial models, Tamarin is used as an
interactive tool, where the user guides the proof search.

Tamarin Oracles. Tamarin supports various heuristics to cover
the search-space yielded by the constraint-solving problem under-
lying the analysis. These heuristics determine which rules should
be prioritised during the proof search. However, a user can create a
file to prioritise different rules yielding a bespoke search heuristic.
This is called an “oracle”5 and can be passed to Tamarin to automate
otherwise user-guided proofs.

Weakly-typed Models. The most generic type of symbolic verifi-
cation is the one in which messages inside models are not typed.

An alternative is weakly typing some of the messages. For in-
stance, instead of leaving certain terms in an arbitrary form when
deducible by the attacker, one can declare a functional symbol to
be used in stating that the attacker should only try to compose/de-
compose specific terms pattern-matching this symbol. This weakly

5Please refer to the Tamarin manual [33] for more details on oracles.

typing does not render the secrecy problem decidable [32], but
makes it more tractable. Such techniques have been used before
in Tamarin-verification when large systems (such as TLS1.3) were
encoded and analysed [22].

In our work, we use oracles for all specification files and, occa-
sionally, we weakly-type parts of the models, e.g, some identifiers
used be a number of 5G messages.

4.2 Suitable Threats for the 5GAKE_stack
We operate three separate levels of security and trust, as introduced
in Section 3.We now argue, in the context of Tamarin, the suitability
of applying one threat model or another to the different variants of
the 5GAKE_stack and/or the procedures therein.

4.2.1 The Threat Model of the Dolev-Yao (DY) Attacker. As stated
previously, this is the default threat model in Tamarin, for all pro-
tocols. It equates to all parties being honest and a Dolev-Yao (DY)
intruder actively mediating all communications.

Applying this threat model. Handovers and AKA have already
been checked in the DY model, in [31] and in [12], respectively. So,
we apply the DY model to: (1) the Registration procedure (as this
procedure has never been formally verified before); (2) a version
of the full 5GAKE_stack , i.e., XN in composition with Registration
procedure. We call this instance of the stack the XN-based 5GAKE_
stack.

Analysing the XN-based 5GAKE_stack.This version of the 5GAKE
_stack is arguably more meaningful to verify than the N2-based
5GAKE_stack, due to the following reason: From a pure Dolev-Yao
perspective with uncorrupted parties, XN and N2 are identical, e.g.,
they share the same (in-)secure channels, etc. However, there are
more active parties in XN than in N2 (recall that in N2 the source
gNBs are merely passive, while in XN the source gNBs play an
active role). Therefore, the verification of a XN-based stack rather
than an N2-based stack is more laborious, in a larger model, and
could yield more insecurities.

We also consider two threat models of increasingly malicious
gNBs, each cast in a Dolev-Yao environment. These are as follows:

4.2.2 The Threat Model of Honest-but-curious gNBs. As introduced
and explained in Section 3, this captures gNBs which are simply
configured to do just horizontal key-derivation in XN but otherwise
follow the protocol. Their aim is to enable the recovery the next-hop
AS keys.

Applying this threat model. It is sufficient to apply this threat
model to a standalone XN procedure for the following reason: If
backwards security is lowered in XN , it is also lower over the whole
5GAKE_stack. Moreover, the models for the 5GAKE_stack are less
tractable.

4.2.3 The Threat Model of Corrupt gNBs. As introduced and ex-
plained in Section 3, this captures gNBs which do not follow the
protocols, i.e., their software is modified with corrupted PDU ses-
sion handling and they can change the PDU session types at will,
e.g., either to lower or to up UEs’ QoS.

Applying this threat model. We note that the parties informed
of PDU session updates are the same in all three procedures. The
management of PDU sessions by these parties is also the same in
all three procedures. Hence, it does not matter which of the three

procedure this enhanced threat-model is applied to. As we already
verified XN under enhanced threats as per the above, we decided
to apply this attacker model to the Registration procedure, REG,
especially, since REG has not been verified before and is also more
tractable than the full 5GAKE_stack model.

4.3 Specifications in Dolev-Yao Threat Model
In this subsection, we discuss our REG and 5GAKE_stack Tamarin
models. In these models, we also include several UPFs. While all
the models in this subsection allow for an arbitrary number of UEs
and gNBs, in some cases, for the sake of a proof’s traceability, we
restrict the number of other entities (e.g., PDU sessions), as we
explicitly detail later.

4.3.1 Specification of the Registration procedure Procedure with
Honest Parties.

Modelling. The Registration procedure [7, 11] is formed of three
parts: (1) initial registration phase; (2) authentication and key agree-
ment; (3) security key setup. We modelled all three parts in Tamarin.

To give an idea of the scale of each sub-procedure, the full Regis-
tration procedure consists of 100 messages [11], of which 30 form
part one, the next 50 form AKA, and the last 20 messages form part
three of the Registration procedure. In the corresponding Tamarin
model, the full Registration procedure model without lemmas (i.e.,
just the protocol rules) has around 1260 lines, with 300 lines encod-
ing AKA.

For the AKA part of Registration procedure, we adapted the
model in [12] in [12], and embedded it into the brand new mod-
els for the rest of the Registration procedure. Note, however, that
the model for AKA from [12] considered roaming, i.e., the UE is
authenticating to its operator’s network whilst being served by a
different operator’s network. Yet, we fitted this in a wider Regis-
tration procedure model, without roaming (i.e., the UE registers
directly in the network of their operator). “Combining” the mod-
els together, ours and those in [12], was an aspect to be handled
carefully; we did not remove anything from their models nor their
lemmas, we simply6 did not quantify over the the serving roaming
network in certain statements/facts/predicates that pertained to
the Registration procedure. We also added the extra logic that, once
the Registration procedure finishes, the gNB node executing REG
with the UE becomes the UE’s effective, serving node.

Finally, unlike in the original AKA model in [12], in our full REG
model, we also formalised 5G entities such as UPFs and 5G objects
such as PDU sessions7.

Clearly, with these additions, the new statements we proved and
some of the predicates we used in the lemmas in our augmented
model also quantify over these newly-added entities and objects; in
turn, this alone increased multi-fold the complexity of the proofs in
our REG model compared to the proofs in the AKA model in [12].

Verification Results. Firstly, we showed that all the sanity and
security checks which held/failed in the AKA model in [12] still

6Since the serving network does nothing else other than passive proxying over secure
channels (for both AKA and Registration procedure), this abstraction is arguably
innocuous in AKE statements.
7We restrict the model to just one PDU session per UE; this encompasses all logical
functionality of PDUs but makes the proofs/model more tractable. We also use, in the
proofs for REG, UPFs without “smart filtering”, which is sufficient since the gNBs are
honest, in this model.

hold/fail in our full model for the Registration procedure. These
results mean that the AKA part of our model was not affected by its
transformation and inclusion in our Registration procedure model.

Secondly, alongside the lemmas inherited from the AKA model,
we also showed anew that the full model executes securely and
correctly in this Dolev-Yao model. To this end, lemma 1 together
with lemma 2 in Table 5 demonstrate, in the DY threat model, the
correctness of our full-Registration procedure model, as well as key-
agreement across all parties at the end of the Registration procedure,
in line with Table 1.

4.3.2 Specification of the XN-based 5GAKE_stack with Honest Par-
ties. We formally modelled and verified the XN-based 5GAKE_stack
in the DY model.

Modelling. To create this Tamarinmodel for the XN-based 5GAKE
_stack, we used our aforementioned model for the Registration pro-
cedure, in which we embedded the very recent XN model in [31]
augmented with certain aspects as the combination of these speci-
fication required careful modelling due to the following reasons:

(1) The AKA model in [12] involved 3 parties: the UEs, the
serving network’s core and the operator’s core.

(2) Our Registration procedure sub-model mainly operates over
3 parties: the UEs, the operator’s core and an “attaching”
gNB.

(3) The XN model in Peltonen et al. operated over 4 parties, the
UEs, a source node, a target node and the operator’s core.

(4) First, in our combined model, we coherently “combined"
these parties andmade the “attaching” gNB in the REGmodel
be the first s-gNB for an XN execution.

(5) Second, a meaningful XN model with the 5GAKE_stack re-
quires the cryptographic keys established during the AKA
phase to be present. So, in our 5GAKE_stackmodel, we in-
cluded this type of correct information flow between proce-
dures.

The XN sub-model allows for horizontal and for vertical key-
derivations in sequence, as per the 3GPP specifications.

The AS message included at the end of the Registration proce-
dure model presented Section 4.3.1 has been removed from our
model 5GAKE_stack, as it is not needed for proving key/data agree-
ment for AKE-security within the 5GAKE_stack; this avoided over-
complicating an already complex model.

Verification Results We now recall the most important results
in Table 5.

Firstly, we proved that themodel is functionally correct, in the DY
model: i.e., the 5GAKE_stack can execute with XN handovers run
on top of Registration procedure. For instance, Lemma 3 in Table 5
encodes the reaching of the end of an XN execution with horizontal
key derivation. Lemmas 4 in Table 5 encodes that we can correctly
do a horizontal-key-derivation handover followed by a vertical-key-
derivation handover, on top of Registration procedure.

Lemmas 3 and 4 that in the XN model in Peltonen et al.; showing
them prove in our model, which lifted XN to the 5GAKE_stack as
explained, ascertains the validity of our model but also the modu-
lar/incremental build that we applied to create it.

Secondly, we proved that the agreement on keys across parties
involved in the AKA procedure as part of REG still holds, even when

the sub-model for Registration procedure has been modified and
included in the full 5GAKE_stack model. See Lemma 5 in Table 5.

4.4 Specifications with Dishonest gNBs
4.4.1 Specification of the XN Procedure with Honest-but-Curious
gNBs. We augmented the XN model in [31] to contain, alongside
honest gNBs, also honest-but-curious gNBs. As per Section 3, recall
that honest-but-curious gNBs can adaptively choose to do just HKD
and so lower the backward-security of XN (recall Figure 3).

Modelling. We implemented the honest-but-curious gNBs in an
as modular as possible way. We made gNBs have threat-types: hon-
est or honest-but-curious. Then, parameterised some Tamarin rules
to trigger based on these threat-types. To this end, the Tamarin rule
“sran_snd_ho_req_hkd” for executing an XN-handover with HKD
triggers only once the GoodOrBadHandovers(state1,state2) re-
striction holds. In this restriction, state1 is the threat-type of the
source gNB and state2 is the threat-type of the target gNB. Then,
the restriction ensures that an honest-but-curious gNB only ever
hands over to another honest-but-curious gNB while an honest
gNB can hands over to either an honest or honest-but-curious gNB.
While this is somewhat unrealistic, it does show that an honest-but-
curious gNB could maliciously try to weaken backward-security for
as long as there are other honest-but-curious gNBs in its vicinity
to serve the UE.

Verification Results.We recount the most important results stated
in Table 5.

The executability lemmas inherited from the original model
continue to prove showing continued functional and correctness
in the case of honest gNBs, even in the presence of malicious ones.
This is captured in Lemma 6 and Lemma 7 in Table 5, which show
that honest gNBs do series of HKD and/or VKD handovers just like
before.

The main lemmas of most interest in this model are Lemma
8 and Lemma 9 in Table 5. The first one shows that honest-but-
curious gNB always handover to another honest-but-curious gNB,
while the second shows that as soon as an honest gNB hands over
to a honest-but-curious gNB, the subsequent handover will be to
another honest-but-curious gNB. In total, this formally shows in 5G,
one get be handed over into a subset of honest-but-curious gNBs,
and then persist in that subnet, where the AS security is lacking.

Finally, via Lemma 9 in Table 5, we show that in this augmented
model for XN, injective agreement between the UE and the target
gNB w.r.t. the established security key is maintained, i.e., the state-
ments in Tables 2 and 3 hold even in this augmented model for
XN.

4.4.2 Specification of the Registration Procedure with Corrupted
gNBs. As we explained in Section 3, at the end of the Registration
procedure, the serving gNB will have an AS channel with the UE
which will be used to route the UE’s traffic to the internet via some
UPFs. In Section 3, we also alluded that if these gNBs became rogue,
then they could manipulate the PDU session lists of the UEs to
route them at will, lowering or upping their QoS. In one new model
for the Registration procedure, we formally prove this.

Modelling We carry forward our model for the Registration pro-
cedure described in Section 4.3.1 and enhance it.

PDU SessionModelling. In ourmodel, we abstracted a PDU session
to simply have an ID and a type. To further reduce the complexity,
we only model a PDU session list of length 1, i.e., one PDU session
per UE. Note that if we prove insecurities in these idealised and
much simplified settings, then these insecurities would thus also
apply to a full PDUSL.

Dishonest gNBs’ Modelling. In this model, we have two types
of gNB nodes: (1) the honest gNB that forwards the AS messages
to UPFs with the correct PDUSL, as declared by the UE. (2) the
dishonest/corrupt gNB that can manipulate PDUSL and replace it
with PDUSL∗, where both the type and ID of the session is changed.

This encapsulates that not only can a dishonest gNB manipulate
the type of a session for a given UE, but such a dishonest gNB can
even replace the session with a PDU session of another UE that it
currently serves.

UPFs’ Modelling. Finally, we model two behaviours for the UPFs
(1) without “smart filtering”, i.e., not checking the PDUs received
from the gNB; (2) with “smart filtering” enabled, checking the PDUs
received from the gNBs against what it holds upon previous receipt
from the core

Verification Results. In this model, we first formally (dis)prove
again all the lemmas we checked for the model of the Registration
procedure in the case of honest gNBs; the verification results stay
unchanged, as expected. An example of this is lemma 11 in Table 5.

In Table 5, lemmas 14-17 are the most important for this model.
They show that honest gNBs route traffic as per PDU sessions, and
all is correct even if the UPF does not do “smart filtering” (lemma
14), or if the UPF does do “smart filtering” (lemma 15). In turn,
lemma 16 and lemma 17 show that a corrupt gNB manipulating
PDUSLs can be detected and stopped if smart filtering is enabled
on the UPF, but not otherwise.

4.5 Learnings & Recommendation
4.5.1 Learnings w.r.t. 5GAKE_stack with Honest gNBs. W.r.t. our
models in the “pure” Dolev-Yao setting, one obvious lesson is that
it is non-trivial to “combine” formal models for (sub-)procedures of
the 5GAKE_stack, where each sub-procedure operates over different
sets of parties. However, this allowed for a partial re-certification
of existing models, coming from different sources (i.e., from [31]
and [12]), by aligning them with our models and yielded the first
full and verified model of the 5GAKE_stack.

A second lesson is that the increased complexity of verifying our
new models is significant, e.g., our “Registration-procedure part1
(Reg-p1) + AKA + Registration-procedure part2 (Reg-p2)” model vs.
the “AKA” model from [12], or our “Reg-p1 + AKA + Reg-p2 + XN”
model vs. the “XN” model from [31]. Not only did we need to create
several bespoke oracles to manage the proofs, but the increase in
time is 3 to 4-fold for AKA and about 10-fold for XN.

Finally, since some aspects of the model/proofs are currently
intractable for more than one handover (see Table 5), as future
work, we intend to simplify the model in a systematic way and
fine-tune the oracles and then (dis)prove more lemmas w.r.t. various
key-agreements over several handovers done in series.

4.5.2 Learnings & Recommendations w.r.t. Dishonest gNBs. In Sec-
tion 4.4.2, we formally showed that –in the REG procedure– rogue
gNBs can affect the QoS of UEs by manipulating their PDUs. We

Lemma Meaning Proving Status &
Method

Threat Model Protocol Time

1 Correctness-UE-Reg-AKA-
Honest

Full executability of our REG model, incl. AKA,
using a gNB send traffic to an UPF which has
no smart filtering enabled

Proved, automated
with an oracle

full DY model REG
incl.
AKA

1m40s

2 anonymous-
injectiveagreement-ue-seaf-
kseaf-noKeyRev-noChanRev

The UE and the core agree on 𝐾𝑆𝐸𝐴𝐹 (see Fig-
ure 2 or Figure 6), if no key reveal/leakage oc-
curs

Proved, automated
with an oracle

DY model (no key
reveal)

REG
incl.
AKA

5m15s

3 executability-HO-hkd 𝑋𝑁ℎ𝑘𝑑 can correctly execute after 𝑅𝐸𝐺 Proved, automated
with an oracle

full DY model 5GAKE
_stack

234m49s

4 executability-HO-hkd-vkd 𝑋𝑁 𝑣𝑘𝑑 can correctly execute after 𝑋𝑁ℎ𝑘𝑑 Not proved full DY model 5GAKE
_stack

OOM

5 anonymous-
injectiveagreement-ue-seaf-
kseaf-noKeyRev-noChanRev

The UE and the core agree on 𝐾𝑆𝐸𝐴𝐹 (see Fig-
ure 2 or Figure 6), if no key reveal/leakage oc-
curs

Proved, automated
with an oracle

DY model (no key
reveal)

5GAKE
_stack

7m55s

6 executability-hkd-hkd 𝑋𝑁ℎ𝑘𝑑 can correctly executed twice even if
HBC nodes are present

Proved, automated
with an oracle

DY model + HBC
gNBs

XN 87m12s

7 executability-hkd-vkd 𝑋𝑁ℎ𝑘𝑑 and then 𝑋𝑁ℎ𝑘𝑑 can be correctly ex-
ecuted if honest-but-curious nodes are present

Proved, automated
with an oracle

DY model + honest-
but-curious gNBs

XN 86m40s

8 executability-bad-to-bad A honest-but-curious gNB always hands over
to a honest-but-curious gNB

Proved, automated
with an oracle

DY model + honest-
but-curious gNBs

XN 5m02s

9 executability-good-to-bad-
general

Once an honest gNB hands over to a honest-
but-curious gNB, subsequent gNBs will be
honest-but-curious

Proved, automated
with an oracle

DY model + honest-
but-curious gNBs

XN 39m02

10 injectiveagreement-ue-tran-k-
gnb

There exists exactly one honest gNB that de-
rived the same key.

Proved, automated
with an oracle

DY model + honest-
but-curious gNBs

XN 35m38s

11 secret-supi The attacker only knows the SUPI if it was
revealed.

Proved, automated
with an oracle

DY model + dishon-
est gNBs

REG 7m12s

14 Correctness-UE-Reg-AKA-
Internet-Honest-noUPFCheck

If the gNBs are honest and if UPFs do not smart
filter, the PDUSL and UE’s Internet-access are
correct

Proved, automated
with an oracle

DY model + dishon-
est gNBs

REG 17m58s

15 Correctness-UE-Reg-
AKA-Internet-Honest-
withSmartFilter

If gNBs are honest and UPFs do smart filter-
ing, the PDUSL and UE’s Internet-access are
correct.

Proved, automated
with an oracle.

DY model + dishon-
est gNBs

REG 16m58s

16 Correctness-UE-Reg-
AKA-Internet-Corrupt-
withSmartFilter

UPFs with smart filtering detect a changed
PDUSL∗ sent by a corrupt gNB and the UE’s
traffic is stopped

Proved, automated
with an oracle

DY model + dishon-
est gNBs

REG 18m05s

17 Correctness-UE-Reg-
AKA-Internet-Corrupt-
noUPFCheck

UPFs with no smart filtering do not detect a
changed PDUSL∗ by a corrupt gNB and the
UPF grants the UE incorrect Internet-access

Proved, automated
with an oracle

DY model + dishon-
est gNBs

REG 16m35s

Table 5: Main Verification Results

showed this in a model for REG (for purposes of tractability), but
the way the AS messages are manipulated by the gNBs is the same
at the end of any sub-procedure in the 5GAKE_stack. So, this matter
affect all AS level of the 5G network. We show that this can be
stopped if the UPF does “smart filtering” and checks the correctness
of the PDU sessions it is routing onto for a given UE.

As a result, we recommend that “smart filtering” be no longer
optional as per the 3GPP specifications [4, 7, 8, 11], but mandatory.

We further recommend that if a UPF with smart filtering finds
such a rogue gNB, then an error message be sent to the core, which
in turn should inform the UE using a 𝐾𝐴𝑀𝐹 -encrypted message.

4.5.3 Learnings & Recommendations w.r.t. Honest-but-curious gNBs.
In Section 4.4.1, we showed that honest-but-curious gNBs can act
(together) to systematically lower the backward security of the
𝐾𝑔𝑁𝐵 key.

This means that N2, where the source gNBs do not actively
compute the next-hop 𝐾𝑔𝑁𝐵 key, should be preferred to XN. But, as
the next section will show, N2 is more costly communication-wise
than XN.

So, a possible alternative, which we do not detail in here, is a
protocol whereby the target gNB would contribute actively to the
computation of the next-hop 𝐾𝑔𝑁𝐵 during 𝑋𝑁ℎ𝑣𝑑 , with a value
that the source gNB does not know, and thus would be unable to
compute the next-hop 𝐾𝑔𝑁𝐵 . This protocol would require a new
input by the target gNB be sent to the core and from the core to the
UE (using encryption with 𝐾𝐴𝑀𝐹) and thus provide an acceptable
compromise in terms of security and communication complexity.

Another solution relies on the UE, which can theoretically check
if a Horizontal Key Derivation or a Vertical Key Derivation is due
in an XN handover (by seeing if it has an unused 𝑁𝐻), and thus
catch when a rogue gNB is maliciously forcing a hkd in XN. This
solution is somewhat impractical, as the UE is informed by the

gNBs as to what type of key-derivation to do, in order to cover for
losses/desynchronisation of data by the UE, e.g., after a total signal
loss.

Finally, we have contacted working groups at ETSI about our
findings; the conversations are incipient and on-going.

5 5GAKE_STACK EMULATOR
We implemented an emulator of the 5GAKE_stack. As we are mainly
focused on AKE aspects, our emulator also focuses on the handling
and update of the keys across the different 5G entities, and we thus
abstracted away somemessage data.We call this open-source, proof-
of-concept implementation: 5GAKE_C. The 5GAKE_C implements
the initial registration and AKA, as well as the different handover
mechanisms. Here, we focus on describing the implementation of
the handovers, as – in general– these are less well understood than
AKA. 5GAKE_C is written in C++.

The latest version of the code is available at [17]

5.1 Overview of the 5GAKE_stack Emulator
5GAKE_C focuses on AKA, as well as both handover procedures: XN
(with both vertical and horizontal key derivation) and N2 (with and
without re-keying). That is, we are interested primarily on AKE
aspects, 5GAKE_C leaves out most details of the REG procedure that
do not pertain to AKA.

More concretely, within 5GAKE_C we include most exchanges of
messages sent back and forth, but we leave out some details related
to the message contents, which are orthogonal to the key-updates.
Also, in the emulation of 5G communication, we do not attempt
to reproduce the network layers. Instead we focus on representing
the messages which are passed in the protocols.

Modular Implementation. We built this emulator to be easily
extendible to other procedures in 5G. We now explain this modular
aspect. We first created a message-passing logic that can support
other 5G protocols. Each entity in the model runs in its own thread
and manages a multi-threaded queue for its input messages. Output
messages are placed in the queue of a ’router’ entity that then puts
the message into the appropriate entity’s input queue. To enable
this, each of the different entities register their input queue with
the router. Each of the (5G) entities has an ID, which the router
uses as their “address” for this message passing. Further, messages
in 5GAKE_C also have a rather generic format, shown below:

Figure 4: Generic Message Format
• Source – the ID of the source entity;
• Dest – the ID of the destination entity;
• Ref. Pt. – the 3GPP “reference points” for the interfaces (see
Figure 1) N1 interface (N1), N2, Xn, N12 and N13. In addi-
tion we defined several extra “reference points”: RRC for UE
to gNB messages and CMD for messages used by the con-
trolling program to trigger the different actions (command
messages);

• RC – the “reason code” for the message, each of the messages
has a reason code which is used to identify the particular
message and its role in the protocol;

• Subscribers Universal Concealment Identity (SUCI) – the stan-
dard Subscribers Universal Concealment Identity, which in
the 5GAKE_C is abusively used in all messages to identify the
relevant UEs;

• Payload – the actual data contained in a particular message.

5G Entities Implemented in 5GAKE_C. Aswe focussed on AKA and
AKEwe only implemented the entities involved in these procedures.
In addition, we focussed on the NAS and took no account of user
plane functions and the management of PDUs on handover. This
will be considered for future work on 5GAKE_C.

Figure 5: Entities in 5GAKE_C.

Figure 5 shows the implemented entities:
• UE. The user equipment which contains a Subscriber Identity
Module (SIM), securely holds the mobile operator’s data and
carries out the calculations needed for authentication.

• gNB. The radio node in the 5G network. It provides the link
between the UE and the core network. Apart from the initial
messages, communication between a gNB and the UE is
integrity and privacy protected. The keys used to do this are
generated as part of the AKA procedure and updated as part
of any handover process.

• AMF. The Access and Mobility Management Function is part
of the serving network (SN). It interacts with the AUSF and
the UE, and stores the intermediate keys that are established
as a result of the UE authentication process.

• AUSF. The Authentication Server Function is part of the
home network and manages the authentication of the UE.

• ARPF. The Authentication Credential Repository & Process-
ing Function is part of the core. It stores the sensitive data and
carries out the calculations needed for the authentication
process. In the model, it also includes the functionality of the
Unified Data Management (UDM) which provides support
for the generation of the AKA authentication credentials and
for storage and management of the SUPI for each subscriber
in the home network.

5GAKE_C supports an arbitrary number of UEs and of gNBs, but
only one of each of the other entities (AMF, AUSF and ARPF). This
implies that in our implementation, there is, e.g., no change in the
AMFs during handovers.

In 5GAKE_C, each entity is represented by a C++ class and each of
the actual entities in the model runs in its own thread. As outlined
above, to facilitate the message passing a Msg_router class is used
and this also runs in its own thread. Each entity has an input queue
that it registers with the Msg_router. The Msg_router registers its
input queue with each entity and this is used by them for sending
messages. All messages from a UE are sent via their current gNB.

Combining AKA and Handovers inside 5GAKE_C. The C++ classes
defined for 5GAKE_C are used in two programs: one designed to test
the XN handovers and the other the N2 handovers. The programs
can be compiled with a number of options:

• PRINT. This prints the protocol message flow and details
about the different keys and entities involved. The output
for part of an N2 handover is shown in Figure 10.

• MSG_LOG. This prints the messages being sent. Figure 9
show some of the output in this case.

• MSG_TIMING. This includes the protocol timings. Results
from this option are shown in Table 6. For this option all of
the other options should be disabled to avoid timing differ-
ences arising due to the other processes running.

• DEBUG. As the name suggests, this is used for debugging
and prints much more information.

For both programs, any executed emulation of the 5GAKE_stack
starts with each UE in the model being sent a command to “attach”
to a gNB. The UE is “attached” to the gNB and this triggers the
start of the AKA protocol, The AKA protocol runs without further
intervention using a Finite State Machine (FSM) on each of the
entities, with each entity involved in authenticating the given UE
(a gNB, the AMF, the Authentication Server Function (AUSF), and
the Authentication Credential Repository & Processing Function
(ARPF)), maintaining an FSM for that UE. The messages in the FSM
models use the UE’s SUCI as an ID. It is easy to add, in 5GAKE_C, the
handling of 5G-GUTIs once the UE is authenticated, but –focusing
on the AKE aspects– we left this for future work.

At the end of a successful authentication, the relevant keys are
distributed to each entity, as per the full 3GPP specifications of
AKA [8], or as recalled in Section 2.2, in Table 1. At this point, each
FSM is in an active, but idle state ready for further processing.

In either program, the execution-flow is now at the stage where
commands can be sent to trigger the relevant handovers. A source
gNB (s-gNB) is sent a command to handover to another specified
target gNB (t-gNB). In a real system, this decision is triggered by
measurements by the s-gNB, which it then sends in a measurement
report. We obviously do not have these, so we prompt a handover
by sending a handover command, instead.

Handovers can be done directly between gNBs using the XN
interface/reference point to handle the process, or, where there is
no direct communication between the gNBs, via the core (using
the N2 interface). There are command codes in 5GAKE_C to trigger
these various options.

Before describing these two options, note that at the end of a
handover, the source gNB removes its FSM for the UE, while the
target gNB now has an FSM for the UE.

5.2 The XN Implementation in 5GAKE_C
We implemented the XN protocol [11] shown in Figure 7 and one
sample XN execution in 5GAKE_C can be seen in Figure 9. The reason
codes can readily be matched up with the messages shown in the
figure. To save space the 8 byte SUCI is simply replaced by “SUCI”.

In 5GAKE_C, we have defined a command to a gNB to trigger
a handover. Once triggered the XN protocol shown in Figure 7
runs without intervention. If the source gNB has a (Next Chain
Counter (NCC), NH) pair available then vertical key derivation is

used, otherwise horizontal key derivation is used. Directly after
the AKA protocol has completed the gNB has no (NCC, NH) pair
available and so the first handover is always a horizontal one. At
the end of this handover, the gNB receives an (NCC, NH) pair
and so, unless the pair is used for other procedures the following
handover will be a vertical one. To “use” the (NCC, NH) pair a
second command to a gNB has been defined, this just marks the
(NCC, NH) pair as being used so that the next handover that is
triggered will be a horizontal one. The program used to test the XN
protocol has one UE, three gNBs and one of all of the other entities.
The program starts with the UE ‘attaching” to one of the gNBs
and executing the AKA protocol. A first handover is then triggered
which will be, as explained above, a horizontal one. This is then
followed by a second handover and this can be either a horizontal
or vertical one depending on a parameter given as the program is
run.

5.3 Experimentation with 5GAKE_C
For each handover carried out, we can measure the total number
of bytes transferred in the messages and the time taken. The time
taken is measured from the first message from the source gNB that
triggers the protocol until the final message. For XN this is the
Handover Success message from the target gNB to the source gNB,
while for the N2 this is the UE Release message from the source
gNB to the AMF.
Note: For the tests the code was compiled using x86_64-linux-gnu-
g++ version 10.3.0 with optimisation set at -O3. The code was run
on an Intel x86_64 processor with 8 i7-8550U CPU cores running
at 1.80GHz. How the threads in the model were distributed over
these cores was not specified, but left to the Linux OS. The results
that we obtained are shown in Table 6.

Handover Total bytes
Time taken/µs
(mean / std.dev.)

XN – horizontal 126 943 / 177
XN – vertical 126 1023 / 136
N2 – no re-keying 182 1389 / 309
N2 – with re-keying 182 1454 / 312

Table 6: Measurements from 5GAKE_C.

For both the XN handover, the messages exchanged are the same.
It is the calculations carried out by the different entities that vary.
The number of bytes transferred in each case is the same. The
same situation applies for the N2 handovers, the number of bytes
transferred is the same for either of the N2 handovers. Table 6
also shows that more data is transferred when executing the N2
protocol, even in our stripped down model.

The timing results also show (albeit in a crude way) that the N2
handovers are more resource intensive.

5.4 Future of 5GAKE_C
Currently 5GAKE_C abstracts awaymany of the lower-level details of
the protocols. There is scope to make it more realistic by “correctly’
including more details of the messages and, for example, handling
the 5G Globally Unique Temporary Identity (5G-GUTI) and the

transfer of PDU sessions. This will involve implementing more of
the 5G entities, but adding them into the model is straightforward.

At the code level, we plan to make running it more straight-
forward by using a configuration file to drive it rather than the
current command-line options. While the programs described here
either just execute XN or just N2 handovers, these can be mixed and
this will be easier to control with a configuration file. The message
passing and processing with FSMs is not restricted to 5G and the
code can be readily adapted to the testing and evaluation of other
protocols.

6 RELATEDWORK
Previous work on the 5GAKE_stack as one single, composed pro-
tocol is sparse. Therefore, we focus on exploring prior work on
the sub-procedures of the 5GAKE_stack. Also, this work is on 5G
environments, so our related-work section will focus of the 5th
generation too, and not so much on prior ones. Similarly, the scope
of covered prior work is mainly formal analyses. We are aware of
numerous studies which may be related otherwise, but we are space
constraint.

Formal Analyses of authentication and key agreement The 5G
AKA procedure is the most widely researched protocol within the
5GAKE_stack. Basin et al., in [12], formally verify it in the Dolev-Yao
model, w.r.t. secrecy, synchronisation, and authentication proper-
ties; some synchronisation attacks between the UE and the core
were found. Their models are in Tamarin and we re-used parts of
them herein. We showed new attacks by combining these models
with our Registration models, and enhancing the threat model.

A study of the privacy of 5G AKA is presented by Koutsos in [28];
this is done in by a cryptographic model which was then not mech-
anised within a tool. Orthogonally, Borgaonkar et al., in [16], carry
out a privacy-centred study of the AKA procedure (in 3G, 4G and
5G) in the Dolev-Yao Model. Here, we are not concerned with pri-
vacy.

Another piece of research into the 5G AKA is by Edris et al. in
[25]. Edris et al. used the ProVerif tool [14] to formally analyse 5G
AKA, and found some linkablity and replay attacks, under arguably
very strong adversarial capabilities.

Formal Analyses of Handovers. There have been multiple differ-
ent studies for 4G handovers:[13, 20, 21]. These works verified 4G
handover procedures (in much simpler settings and models than
herein), using ProVerif [14]. Also, a core part of the verification in
[13] was focused just on secrecy properties. Meanwhile, [20, 21]
did consider payload security and forward/backward secrecy, but
all in 4G.

Very recently, Peltonen et al. in [31] proposed the formal verifi-
cation of 5G handover procedures. This was done in the Dolev-Yao
model, against secrecy and authentication properties. No attacks
were found by this work, which assumes that all parties are honest.
We extended this work in two ways: (1) to consider dishonest par-
ties, (2) to integrate it with the Registration and AKA procedures
into one model. We find new insecurity results.

Formal Analyses of Registration procedure. The UE Registration
procedure has had the least amount of research, from all the proce-
dures discussed herein. Chen et al., in [18], looks at the possibility

of Denial of Service (DOS) within the Registration procedure, but
only from a practical experimental approach.

This Work vs. Closely-related Prior Work. In this work, we use the
aforementionedAKAmodels by Basin et al. in [12] and the handover
models by Peltonen et al. in [31]. However we do not only extend
their models to larger procedures, but we also add more details
to them and combine them. Moreover, we add a stronger threat-
model to each of the individual models, as well as to the “composed”
model for the 5GAKE_stack. We do revisit the exact findings in
either of the inherited models and check the corresponding ones
in the extended/composed models too. Finally, we actually focus
on verifying the properties of the 5GAKE_stack in our “composed”
model, as well as checking security in our enhanced threat-models.
In this setting, we show new attacks and make recommendations
to improve the standards.

7 CONCLUSIONS
We formally analysed the REG, AKA procedure (AKA) and the
N2/XN handover procedure 5G procedures, from the AKE perspec-
tive, as individual procedures and in sequential composition. We
varied the threat model, showing formally that even when the
radio-nodes are just honest-but-curious and not fully malicious,
the overall AKE-security of the procedures can be vastly lowered.
Whilst some of these findings can be performed by pen-and-paper
analysis after careful understanding of the procedures, we are the
first to prove this formally (using a protocol-prover) for any of the
procedures, as well as formally doing so for the composition of the
procedures. What is more, our models are a faithful representations
of the 3GPP specifications [6].

We also built an emulator, 5GAKE_C, of the procedural stack and
used it to empirically assess the communication complexity of the
procedures.

In future work, we wish to improve the proof heuristics (i.e.,
Tamarin oracles) linked to our Tamarin files, as –due to the faithful-
ness of our modelling and the complexity of the procedures – many
proofs take an exceedingly long time even on multi-core machines.
We also intend to further develop 5GAKE_C into a more mature 5G
emulator and include more 5G data-fields in the messages.

ACKNOWLEDGMENTS
Rhys Miller acknowledges National Cyber Security Centre (NCSC)
funds under the “5GTech-Sec” project, and Ioana Boureanu ac-
knowledges EPSRC grant reference EP/S024565/1 “AutoPaSS”.

REFERENCES
[1] 3GPP. 2020. 5G Security Assurance Specification (SCAS); Access and Mobility

management Function (AMF). Technical Specification (TS) 33.512. 3GPP. Version
16.3.0.

[2] 3GPP. 2020. 5G Security Assurance Specification (SCAS) for the Session Manage-
ment Function (SMF) network product class. Technical Specification (TS) 33.515.
3GPP. https://www.etsi.org/deliver/etsi_ts/133500_133599/133515/16.02.00_60/
ts_133515v160200p.pdf Version 16.2.0.

[3] 3GPP. 2020. Interface between the Control Plane and the User Plane nodes. Technical
Specification (TS) 29.244. 3GPP. https://www.etsi.org/deliver/etsi_ts/129200_
129299/129244/16.05.00_60/ts_129244v160500p.pdf Version 16.5.0.

[4] 3GPP. 2020. Non-Access-Stratum (NAS) protocol for 5G System (5GS). Technical
Specification (TS) 24.501. 3GPP. https://www.etsi.org/deliver/etsi_ts/124500_
124599/124501/16.05.01_60/ts_124501v160501p.pdf Version 16.5.1.

[5] 3GPP. 2020. PDU session user plane protocol. Technical Specification (TS) 38.415.
3GPP. https://www.etsi.org/deliver/etsi_ts/138400_138499/138415/16.01.00_60/

https://www.etsi.org/deliver/etsi_ts/133500_133599/133515/16.02.00_60/ts_133515v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/133500_133599/133515/16.02.00_60/ts_133515v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/16.05.00_60/ts_129244v160500p.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/16.05.00_60/ts_129244v160500p.pdf
https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.05.01_60/ts_124501v160501p.pdf
https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.05.01_60/ts_124501v160501p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138415/16.01.00_60/ts_138415v160100p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138415/16.01.00_60/ts_138415v160100p.pdf

ts_138415v160100p.pdf Version 16.1.0.
[6] 3GPP. 2020. Release 16. https://www.3gpp.org/release-16
[7] 3GPP. 2020. System architecture for the 5G System (5GS). Technical Specification

(TS) 23.501. 3GPP. https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/
16.06.00_60/ts_123501v160600p.pdf Version 16.0.0.

[8] 3GPP. 2020. System architecture for the 5G System (5GS). Technical Specification
(TS) 23.501. 3GPP. https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/
16.06.00_60/ts_123501v160600p.pdf Version 16.0.0.

[9] 3GPP. 2020. Wireless and wireline onvergence access support for the 5G System
(5GS). Technical Specification (TS) 23.316. 3GPP. https://www.etsi.org/deliver/
etsi_ts/123300_123399/123316/16.04.00_60/ts_123316v160400p.pdf Version 16.0.0.

[10] 3GPP. 2020. Xn Application Protocol (XnAP). Technical Specification (TS) 38.423.
3GPP. https://www.etsi.org/deliver/etsi_ts/138400_138499/138423/16.02.00_60/
ts_138423v160200p.pdf Version 16.2.0.

[11] 3GPP. 2021. Procedures for the 5G System. Technical Specification (TS) 23.502.
3GPP. https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/
ts_123502v150200p.pdf Version 16.7.0.

[12] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In CCS ’18 (CCS
’18). ACM, New York, NY, USA, 1383–1396.

[13] Noomene Ben Henda and Karl Norrman. [n. d.]. Formal Analysis of Security
Procedures in LTE - A Feasibility Study. In RAID ’14 (2014) (LNCS). Springer,
341–361.

[14] Bruno Blanchet. 2001. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In CSFW ’14. IEEE Computer Society, 82–96.

[15] Bruno Blanchet. 2012. Security protocol verification: Symbolic and computational
models. In POST ’12. Springer, 3–29.

[16] Ravishankar Borgaonkar, Lucca Hirschi, Shinjo Park, and Altaf Shaik. 2019. New
Privacy Threat on 3G, 4G, and Upcoming 5G AKA Protocols. PoPETs ’19 2019, 3
(2019), 108–127.

[17] Ioana Boureanu, Stephan Wesemeyer, Chris Newton, and Rhys Miller. 2022. 5G
Tamarin models and 5G Emulator. GitHub, https://fmsec.github.io/5gtechsec.
github.io/.

[18] Chien-Ming Chen, Tsu-Yang Wu, Raylin Tso, and Mu-En Wu. 2014. Security
Analysis and Improvement of Femtocell Access Control. In Network and System
Security. Springer International Publishing, Cham, 223–232.

[19] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. 2016. On Post-compromise
Security. In CSF ’16. 164–178. https://doi.org/10.1109/CSF.2016.19

[20] Piergiuseppe Bettassa Copet, Guido Marchetto, Riccardo Sisto, and Luciana Costa.
[n. d.]. Formal verification of LTE-UMTS and LTE-LTE handover procedures. 50
([n. d.]), 92–106. https://doi.org/10.1016/j.csi.2016.08.009

[21] Piergiuseppe Bettassa Copet, Guido Marchetto, Riccardo Sisto, and Luciana Costa.
[n. d.]. Formal verification of LTE-UMTS handover procedures. In ISCC ’15 (2015).
IEEE, 738–744.

[22] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In CCS ’17. 1773–
1788.

[23] D. Dolev and A. Yao. 1983. On the Security of Public-Key Protocols. IEEE Trans.
Inf. Theory 29 29, 2 (1983).

[24] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. 1999. Undecidability of Bounded
Security Protocols. In FMSP’99. ACM.

[25] Ed Kamya Kiyemba Edris, Mahdi Aiash, and Jonathan Kok-Keng Loo. 2020.
Formal verification and analysis of primary authentication based on 5G-AKA
protocol. In SDS ’20. IEEE, 256–261.

[26] Erricson. 2020. 5 key facts about 5G radio access networks. https:
//www.ericsson.com/495922/assets/local/policy-makers-and-regulators/5-
key-facts-about-5g-radio-access-networks.pdf.

[27] Infrastructure and Projects Authority. 2018. Analysis of the National Infrastruc-
ture and Construction Pipeline. https://www.gov.uk/government/publications/
national-infrastructure-and-construction-pipeline-2018

[28] Adrien Koutsos. 2019. The 5G-AKA authentication protocol privacy. In EuroS&P
’19. IEEE, 464–479.

[29] Philippe Z Lin, Charles Perine, and Rainer Vosseler. 2017. Attacks From
4G/5G Core Networks: Risks of the Industrial IoT in Compromised Campus
Networks. https://documents.trendmicro.com/assets/white_papers/wp-attacks-
from-4G-5G-core-networks.pdf.

[30] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. [n. d.]. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In CAV ’13
(2013) (LNCS). Springer, 696–701.

[31] Aleksi Peltonen, Ralf Sasse, and David Basin. 2021. A Comprehensive Formal
Analysis of 5G Handover. In WiSec ’21 (WiSec ’21). ACM, New York, NY, USA,
1–12.

[32] Y. S. Ramakrishma and S. A. Smolka. 1997. Partial-Order Reduction in the Weak
Modal Mu-Calculus. In CONCUR ’97 (LNCS, Vol. 1243). Springer, 5–24.

[33] The Tamarin Team. 2016. Tamarin prover manual. https://tamarin-prover.github.
io/manual/tex/tamarin-manual.pdf [Online: accessed 09-April-2019].

A ASPECTS OF THE REGISTRATION
PROCEDURE

In this appendix, we show via Figure 6 which parties run the REG
procedure, and represent which main keys are refreshed in this
procedure and which parties hold these keys. As shown on Figure 6,
the REG procedure [7, 11] is split into three parts: (1) initial regis-
tration; (2) authentication and key agreement [8]; (3) security key
setup .

The objects crossed in red denote the fact that they are no longer
to be used and are to be deleted from memory. The dots denote that
other keys are present, but they are not of any interest herein. NCC
stands for a counter of how many NHs have been used in security
keys 𝐾𝑔𝑁𝐵 since the last REG.

B ASPECTS OF THE XN PROCEDURE
In this appendix, we show via Figure 7 which parties run the XN
procedure, and represent which main keys are refreshed in this
procedure and which parties hold these keys.

The objects crossed in red denote the fact that they are no longer
to be used and are to be deleted from memory. The dots denote that
other keys are present, but they are not of any interest herein. NCC
stands for a counter of how many NHs have been used in security
keys 𝐾𝑔𝑁𝐵 since the last REG.

C ASPECTS OF THE N2 PROCEDURE
In this appendix, we show via Figure 8 which parties run the N2
procedure, and represent which main keys are refreshed in this
procedure and which parties hold these keys.

The objects crossed in red denote the fact that they are no longer
to be used and are to be deleted from memory. The dots denote that
other keys are present, but they are not of any interest herein. We
did not detail on elements such as NAS Count (NASC) but they tell
the UE which flavour of the procedure was run, so that the UE can
replicate the correct calculations of the security key.

https://www.etsi.org/deliver/etsi_ts/138400_138499/138415/16.01.00_60/ts_138415v160100p.pdf
https://www.3gpp.org/release-16
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123300_123399/123316/16.04.00_60/ts_123316v160400p.pdf
https://www.etsi.org/deliver/etsi_ts/123300_123399/123316/16.04.00_60/ts_123316v160400p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138423/16.02.00_60/ts_138423v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138423/16.02.00_60/ts_138423v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://fmsec.github.io/5gtechsec.github.io/
https://fmsec.github.io/5gtechsec.github.io/
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1016/j.csi.2016.08.009
https://www.ericsson.com/495922/assets/local/policy-makers-and-regulators/5-key-facts-about-5g-radio-access-networks.pdf
https://www.ericsson.com/495922/assets/local/policy-makers-and-regulators/5-key-facts-about-5g-radio-access-networks.pdf
https://www.ericsson.com/495922/assets/local/policy-makers-and-regulators/5-key-facts-about-5g-radio-access-networks.pdf
https://www.gov.uk/government/publications/national-infrastructure-and-construction-pipeline-2018
https://www.gov.uk/government/publications/national-infrastructure-and-construction-pipeline-2018
https://documents.trendmicro.com/assets/white_papers/wp-attacks-from-4G-5G-core-networks.pdf
https://documents.trendmicro.com/assets/white_papers/wp-attacks-from-4G-5G-core-networks.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

Figure 6: The 5GAKE_stack Short-term Keys’ Update and
Distribution at the End of REG

D EXAMPLE EXECUTIONS OF 5GAKE_C
In this appendix, we give more details about the 5GAKE_C code, as
well as its outputs. The output for part of an N2 handover execution
is shown in Figure 10 and Figure 9 shows themessages sent between
different entities.

The messages for the XN follow the protocol shown in Figure 7.
Details of the messages (given their reason codes) are:

Xn ho req. The s-gNB sends a handover request to the t-gNB. The
payload contains the UE ID, the current Cell Radio Network
Temporary Identifier (C-RNTI), the new KgNB and the NCC
value.

Xn ho ack. The t-gNB responds with an acknowledgement. The
payload contains the old C-RNTI, the new C-RNTI and NCC.

Xn ho UE. The s-gNB sends the handover information to the UE.
The payload contains the t-gNB ID, the new C-RNTI and
NCC.

UE ho acc. The UE accepts the request.
Xn PDU id. The t-gNB sends information about the transfer to the

AMF. This is usually where the PDU sessions are handled,
but the AMF also sends a (NCC,NH) to the t-gNB. Although
not currently handling PDU sessions, we do want the t-gNB
to receive the (NCC,NH) pair.

Xn ho comp. The t-gNB sends a handover completion message
to the s-gNB.

AMF ack. The AMF acknowledges the handover. The payload
contains NH and NCC.

Figure 7: The 5GAKE_stack Short-term Keys’ Update and
Distribution at the End of XN

Similarly, the messages for N2 follow the protocol shown in Figure 8.
These are the message details:
N2 ho req. The s-gNB sends a handover request to the AMF. The

payload contains the t-gNB ID, the UE ID and a flag to indi-
cate whether to re-key, or not.

AMF ho req. The AMF send a handover request to t-gNB. The
payload contains the UE ID, NH, NCC and the NASC data
(in our case this is the key change flag, the key-set identity
and the downlink NAS count).

N2 ho ack. The t-gNB acknowledges the request. The payload
contains the NASC again.

N2 ho cmd. The AMF sends the handover data to s-gNB. The pay-
load contains t-gNB ID, NCC and NASC.

N2 ho cmd. The s-gNB forwards the handover data to the UE.
UE ho cfrm. The UE confirms its acceptance of the handover to

t-gNB.
N2 ho comp. The t-gNB indicates to the AMF that the handover

is complete.
gNB release. The AMF informs the s-gNB that the handover is

complete.
gNB confirm. the s-gNB confirms the release.

Figure 8: The 5GAKE_stack Short-term Keys’ Update and
Distribution after N2

Figure 9: XN and N2 Emulator Code Output

Figure 10: A partial N2 handover (no re-keying) in Emulator
Run

	Abstract
	1 Introduction
	2 Background
	2.1 An Overview of the 5G Network
	2.2 An Overview of the 5GAKE_stack

	3 Our Trust & Threat Models
	4 Formal Security Verification of the 5GAKE_stack
	4.1 Tamarin Overview
	4.2 Suitable Threats for the 5GAKE_stack
	4.3 Specifications in Dolev-Yao Threat Model
	4.4 Specifications with Dishonest gNBs
	4.5 Learnings & Recommendation

	5 5GAKE_stack Emulator
	5.1 Overview of the 5GAKE_stack Emulator
	5.2 The XNp Implementation in 5GAKE_C
	5.3 Experimentation with 5GAKE_C
	5.4 Future of 5GAKE_C

	6 Related Work
	7 Conclusions
	References
	A Aspects of the Registration Procedure
	B Aspects of the XN Procedure
	C Aspects of the N2 Procedure
	D Example Executions of 5GAKE_C

